서울시립대 - 채성호 환경 데이터 사이언스/엔지니어링 및 모델링 연구실
  • Laboratory for Environmental Data science

    기후위기 시대, 환경 데이터 사이언스의 미래를 밝히는 LED 연구실

Research

Publications

VIEW MORE
  • 배경 이미지

    Systematic analysis of capacitive deionization using stepwise operating data and multiple machine learning models: the effect of data attributes on process estimation

    Sung Ho Chae, Jonghun Lee, Chang-Kyu Lee, Seokyoon Moon, Byung-Moon Jun, June-Seok Choi, Hojung Rho Desalination
  • 배경 이미지

    Exploring decisive operating factors for micropollutants fate in ultraviolet-based advanced oxidation processes using the integrated clustering-classification model

    Ejerssaa, W.W., Seida, M.G., Moon, B.C., Son, M.*, Chae, S.H.*, Hong, S.W.* Separation and Purification Technology
  • 배경 이미지

    Remediation of acidic effluents from Uranium-Contaminated soil using coffee Residue Biochar: A Combined experimental and Machine learning approach

    Byung-Moon Jun, Sung Ho Chae, Deokhwan Kim, Changgil Son, Tack-Jin Kim, Seok Won Hong, Yeomin Yoon, Kangmin Chon, Hojung Rho Separation and Purification Technology
  • 배경 이미지

    Feasibility study of real-time virtual sensing for water quality parameters in river systems using synthetic data and deep learning models

    Byeongwook Choi, Eun Jin Han, KyoungJin Lee, Moon Son, Seok Won Hong, Sungjong Lee, Sung Ho Chae Journal of Environmental Management
  • 배경 이미지

    Robust deep learning model combined with missing input data estimation: Application in a 1000 m3/day high-salinity SWRO plant

    Jeongwoo Moon, Kwanho Jeong, Sung Ho Chae, Jaegyu Shim, Jihye Kim, Kyung Hwa Cho, Kiho Park Desalination